某高校《统计》课程的教师随机给出了选该课程的一些情况,具体数据如下:
非统计专业 | 统计专业 | |
男 | 13 | 10 |
女 | 7 | 20 |
为了判断选修统计专业是否与性别有关,根据表中数据,得 ,因为
,所以可以判定选修统计专业与性别有关.那么这种判断出错的可能性为( )
如图所示,样本A和B分别取自两个不同的总体,它们的样本平均数分别为 、
,样本标准差分别为SA , SB , 则( )
x | 0 | 1 | 2 | 3 | 4 |
y | 2.2 | 4.3 | 4.5 | 4.8 | 6.7 |
且回归直线方程为 =bx+2.6,根据模型预报当x=6时,y的预测值为( )
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
参照附表,得到的正确结论是( )
月平均气温x(℃) | 17 | 13 | 8 | 2 |
月销售量y(件) | 24 | 33 | 40 | 55 |
由表中数据算出线性回归方程 =bx+a中的b=﹣2,气象部门预测下个月的平均气温约为6℃,据此估计该商场下个月毛衣销售量约为( )件.
价格x | 9 | 9.5 | 10 | 10.5 | 11 |
销售量y | 11 | 10 | 8 | 6 | 5 |
由散点图可知,销售量y与价格x之间有较好的线性相关关系,其线性回归方程是:y=﹣3.2x+a,则a=( )
男 | 女 | 合 计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
合 计 | 60 | 50 | 110 |
根据上述数据能得出的结论是( )
(参考公式与数据:X2= .当X2>3.841时,有95%的把握说事件A与B有关;当X2>6.635时,有99%的把握说事件A与B有关; 当X2<3.841时认为事件A与B无关.)