把三张大小相同的正方形卡片A、B、C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示,若按图1摆放时,阴影部分的面积为S1;若按图2摆放时,阴影部分的面积为S2 , 则S1与S2的大小关系是( )
如图,把一副常用的三角板如图所示拼在一起,那么图中∠ABF=.
如图,小明在操场上从A点出发,沿直线前进10米后向左转40°,再沿直线前进10米后,又向左转40°,照这样走下去,他第一次回到出发地A点时,一共走了米.
如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC , S△ADF , S△BEF , 且S△ABC=12,则S△ADF﹣S△BEF=.
如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是°.
画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸中将△ABC经过一次平移后得到△A′B′C′,图中标出了点C的对应点C′.
如图,AD∥BE,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.
求证:AB∥CD.
求1+2+22+23+24+…+22013的值.
解:设S=1+2+22+23+24+…+22012+22013 , 将等式两边同时乘2,
得2S=2+22+23+24+25+…+22013+22014 .
将下式减去上式,得2S﹣S=22014-1
即S=22014-1,
即1+2+22+23+24+…+22013=22014-1
仿照此法计算:
如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F