a、b两辆汽车沿同一直线运动,它们的x﹣t图象如图所示,则下面关于两车运动情况的说法正确的是( )
如图所示,在Ⅰ、Ⅱ两个区域内存在磁感应强度均为B的匀强磁场,磁场方向分别垂直于纸面向外和向里,边界AC、AD的夹角∠DAC=30°,边界AC与边界MN平行,边界AC处磁场方向垂直纸面向里,Ⅱ区域宽度为d.质量为m、电荷量为+q的粒子在边界AD上距A点d处垂直AD射入Ⅰ区,已知粒子速度大小为 ,方向垂直磁场,不计粒子重力,则粒子磁场中运动的总时间为( )
如图所示,M、N是在真空中竖直放置的两块平行金属板,质量为m、电量为﹣q的带电粒子,以初速度v0由M板中间的小孔垂直金属板进入电场中,不计粒子重力.当M、N间电压为U时,带电粒子恰好能够到达M、N两板间距的一半处返回,现将两板间距变为原来的一半,粒子的初速度变为2v0 , 要使这个粒子刚好能够到达N板,则两板间的电压应变为( )
一位网球运动员以拍击球,使网球沿水平方向飞出,第一只球落在自己一方场地的B点,弹跳起来后,刚好擦网而过,也落在A点,设球与地面的碰撞过程没有能量损失,且运动过程不计空气阻力,则两只球飞过球网C处时水平速度之比为( )
如图所示,一个由绝缘材料制成的闭合水平放置,环上各点在同一平面内,在环面内A、B两点分别固定两个点电荷QA和QB , 其中QA为正电荷,一个带正电的小球P穿在环上,可以沿着闭合环无摩擦第滑动,现给小球P一定的初速度,小球恰好能沿环做速度大小不变的运动,则下列判断正确的是( )
如图所示,虚线框内为漏电保护开关的原理示意图,变压器A处用火线和零线平行绕制成线圈,然后接到用电器,B处有一个输电线圈,一旦线圈B中有电流,经过大后便能推动继电器切断电源,如果甲、乙、丙、丁四人分别以图示方式接触电线(裸露部分),甲、乙、丙站在木凳上,则下列说法正确的是( )
在如图所示的电路中,A、B、C为三节干电池,实验中理想电压表和电流表的读数如表所示.
某同学利用气垫导轨验证机械能守恒定律,实验装置如图所示,气垫导轨与水平桌面的夹角为θ,导轨底端P点有一带挡光片的滑块,滑块和挡光片的总质量为M,挡光片的宽度为b,滑块与沙桶由跨过轻质光滑定滑轮的细绳相连,导轨上Q点固定一个光电门,挡光片到光电门的距离为d.
用光滑圆管制成如图所示的轨道,竖直立于水平地面上,其中ABC为圆轨道的一部分,CD为倾斜直轨道,二者相切与C点,已知圆轨道的半径R=1m,倾斜轨道CD与水平地面的夹角为θ=37°,现将一小球以一定的初速度从A点射入圆管,小球直径略小于圆管的直径,取重力加速度g=10m/s2 , sin37°=0.6,cos37°=0.8,求小球通过倾斜轨道CD的最长时间(结果保留一位有效数字).
如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻,导体棒a和b放在导轨上,与导轨垂直并接触良好,斜面上水平虚线PQ以下区域内,存在着垂直斜面向上的磁场,磁感应强度大小为B0 . 已知b棒的质量为m,a棒、b棒和定值电阻的阻值均为R,导轨电阻不计,重力加速度为g.
如图所示,内壁光滑的圆柱形导热气缸固定在水平面上,气缸内被活塞封有一定质量的理想气体,活塞横截面积为S,质量和厚度都不计,活塞通过弹簧与气缸底部连接在一起,弹簧处于原长,已知周围环境温度为T0 , 大气压强恒为p0 , 弹簧的劲度系数k= (S为活塞横截面积),原长为l0 , 一段时间后,环境温度降低,在活塞上施加一水平向右的压力,使活塞缓慢向右移动,当压力增大到某一值时保持恒定,此时活塞向右移动了0.2l0 , 缸内气体压强为1.1p0 .
如图是水面上两列频率相同的波在某时刻的叠加情况,以波源S1、S2为圆心的两组同心圆弧分别表示同一时刻两列波的波峰(实线)和波谷(虚线),S1的振幅A1=3cm,S2的振幅A2=2cm,则下列说法正确的是( )
如图所示,一玻璃砖的横截面为半圆形,O为圆心,半径为R,MN为直径,P为OM的中点,MN与水平放置的足够大光屏平行,两者间距为d= R,一单色细光束沿垂直于玻璃砖上表面的方向从P点射入玻璃砖,光从弧形表面上某点A射出后到达光屏上某处Q点,已知玻璃砖对该光的折射率为n= ,求光束从OM上的P点射入玻璃砖后到达光屏上Q点所用的时间(不考虑反射光,光在真空中传播速度为c).
如图所示,物块A静止在光滑水平面上,木板B和物块C一起以速度v0向右运动,与A发生弹性正碰,已知v0=5m/s,mA=6kg,mB=4kg,mC=2kg,C与B之间动摩擦因数μ=0.2,木板B足够长,取g=10m/s2 , 求: