(I)证明数列{an+4}是等比数列;
(Ⅱ)求数列{|an|}的前n项和Sn .
已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分别作出甲校如图1所示样本频率分布直方图,乙校如图2所示样本中等级为C、D的所有数据茎叶图.
(I)若λ=2,求证:GR⊥平面PEF;
(Ⅱ)是否存在正实数λ,使得直线FR与平面DEF所成角的正弦值为 ?若存在,求出λ的值;若不存在,请说明理由.
(I)若直线l1的倾斜角为 ,求△ABM的面积S的值;
(Ⅱ)过点B作直线BN⊥l于点N,证明:A,M,N三点共线.
(I)当x>0时,求函数g(x)=f(x)+ln(x+1)+ x的单调区间;
(Ⅱ)当a∈Z时,若存在x≥0,使不等式f(x)<0成立,求a的最小值.
在平面直角坐标系xOy中,倾斜角为α(α≠ )的直线l的参数方程为 (t为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρcos2θ﹣4sinθ=0.
(I)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)已知点P(1,0).若点M的极坐标为(1, ),直线l经过点M且与曲线C相交于A,B两点,设线段AB的中点为Q,求|PQ|的值.
已知函数f(x)=x+1+|3﹣x|,x≥﹣1.
(I)求不等式f(x)≤6的解集;
(Ⅱ)若f(x)的最小值为n,正数a,b满足2nab=a+2b,求2a+b的最小值.