(Ⅰ)求集合A,B;
(Ⅱ)若集合A,B满足A∩B=B,求实数a的取值范围.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)将函数y=f(x)的图象沿x轴方向向右平移 个单位长度,再把横坐标缩短到原来的 (纵坐标不变),得到函数y=g(x)的图象,当x∈[﹣ , ]时,求函数g(x)的值域.
(Ⅰ)求函数f(x)的定义域,并证明其在定义域上是奇函数;
(Ⅱ)对于x∈[2,6],f(x)>lg 恒成立,求m的取值范围.
(Ⅰ)当x∈(0,π)时,求f(x)的单调递减区间;
(Ⅱ)若f(x)在[0,θ]上的值域为[0,2 +1],求cos2θ的值.
(Ⅰ)当a=﹣1时,求f(x)在[﹣3,0]上的最大值和最小值;
(Ⅱ)若方程f(x)=0有3个不相等的实根x1 , x2 , x3 , 求 + + 的取值范围.