(1)=(1,2,1),=(1,﹣2,3);
(2)=(8,4,﹣6),=(4,2,﹣3);
(3)=(0,1,﹣1),=(0,﹣3,3);
(4)=(﹣3,2,0),=(4,﹣3,3).
(1)“m是实数”是“m是有理数”的充分不必要条件;
(2)“a>b”是“a2>b2”的充要条件;
(3)“x=3”是“x2﹣2x﹣3=0”的必要不充分条件;
(4)“A∩B=B”是“A=∅”的必要不充分条件.
双曲线(a>0,b>0)的左、右焦点分别是F1 , F2 , 过F1作倾斜角为30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率为( )
如图,梯形ABCD中,AB∥CD,且AB⊥平面α,AB=2BC=2CD=4,点P为α内一动点,且∠APB=∠DPC,则P点的轨迹为( )
①设A、B为两个定点,K为非零常数,若|PA|﹣|PB|=K,则动点P的轨迹是双曲线.
②方程2x2﹣5x+2=0的两根可分别作为椭圆和双曲线的离心率.
③双曲线﹣=1与椭圆+y2=1有相同的焦点.
④已知抛物线y2=2px,以过焦点的一条弦AB为直径作圆,则此圆与准线相切.
其中真命题为 (写出所以真命题的序号)
在三棱锥P﹣ABC中,PB2=PC2+BC2 , PA⊥平面ABC.
求证:AC⊥BC
求数列{an}的通项公式.
在边长为2的正方体ABCD﹣A1B1C1D1中,E是BC的中点,F是DD1的中点,
(1)求点A到平面A1DE的距离;
(2)求证:CF∥平面A1DE;
(3)求二面角E﹣A1D﹣A的平面角大小的余弦值.
如图,椭圆E:+=1(a>b>0)经过点A(0,﹣1),且离心率为 .
求椭圆E的方程.