如图是一个空间几何体的三视图,则该几何体的全面积为( )
如图是正方体的平面展开图,则在这个正方体中:
①BM与ED平行②CN与BE是异面直线
③CN与BM成60°角④DM与BN是异面直线
以上四个命题中,正确的命题序号是( )
①若A∈α,B∈α,C∈AB,则C∈α;
②若α∩β=l,b⊂α,c⊂β,b∩c=A,则A∈l;
③A,B,C∈α,A,B,C∈β且A,B,C不共线,则α与β重合;
④任意三点不共线的四点必共面.
其中真命题的个数是( )
如图是一个几何体的三视图,若它的体积是3 , 则a= ,该几何体的表面积为
四棱锥P﹣ABCD的顶点P在底面ABCD上的投影恰好是A,其正视图与侧视图都是腰长为a的等腰直角三角形.则在四棱锥P﹣ABCD的任意两个顶点的连线中,互相垂直的异面直线共有 对.
①函数y=f(x),x∈R的图象与直线x=a可能有两个不同的交点;
②函数y=log2x2与函数y=2log2x是相等函数;
③对于指数函数y=2x与幂函数y=x2 , 总存在x0 , 当x>x0 时,有2x>x2成立;
④对于函数y=f(x),x∈[a,b],若有f(a)•f(b)<0,则f(x)在(a,b)内有零点.
⑤已知x1是方程x+lgx=5的根,x2是方程x+10x=5的根,则x1+x2=5.
其中正确的序号是 .
(1)分别求A∩B,(∁RB)∪A;
(2)已知集合C={x|1<x<a},若C⊆A,求实数a的取值集合.
如图所示,正方体ABCD﹣A1B1C1D1的棱长为8cm,M,N,P分别是AB,A1D1 , BB1的中点.
(1)画出过M,N,P三点的平面与平面A1B1C1D1的交线以及与平面BB1C1C的交线;
(2)设过M,N,P三点的平面与B1C1交于Q,求PQ的长.
(1)求f(x)的解析式;
(2)若不等式f(t﹣2)+f(2t+1)>0成立,求实数t的取值范围.
(1)求a,b的值;
(2)判断函数f(x)的单调性,并用定义证明;
(3)若对于任意都有f(kx2)+f(2x﹣1)>0成立,求实数k的取值范围.