十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间
均分为三段,去掉中间的区间段
,记为第一次操作;再将剩下的两个区间段
,
分别均分为三段,并各自去掉中间的区间段,记为第二次操作;如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于
,则需要操作的次数
的最小值为(参考数据:
,
)( )