我国著名的数学家秦九韶在《数书九章》提出了“三斜求积术”.他把三角形的三条边分别称为小斜、中斜和大斜.三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个数,相减后余数被4除,所得的数作为“实”,1作为“隅”,开平方后即得面积.所谓“实”、“隅”指的是在方程
中,
p为“隅”,
q为“实”.即若
的大斜、中斜、小斜分别为
a,
b,
c, 则
.已知点
D是
边
AB上一点,
,
,
,
,则
的面积为
.