如图1所示,一只封闭的圆柱形容器内盛了一半水(容器的厚度忽略不计),圆柱形容器底面直径为高的2倍,现将该容器竖起后如图2所示,设图1、图2中水所形成的几何体的表面积分别为S1、S2 , 则S1与S2的大小关系是( )
圆柱体外包装的材料损耗率问题研究
素材1
厂商在生产产品时,对产品外包装的材料,通常要考虑尽可能地合理利用,减少浪费。圆柱体形状的物品,它的外包装盒通常都是长方体,且上下底面为正方形。
素材2
设计产品外包装时,我们把裁剪掉的废料部分的面积与原图形的面积之比称为材料的损耗率。一种材料利用率较高的裁剪方式如图所示,采用正方形纸板裁剪,只需剪掉四条边上的四个小三角形。
按这种方式包装一个底面直径为2,高为1的圆柱体(接缝处的材料损耗不计),损耗率只有≈11.1%.
问题解决
任务1
现采用一张边长为4 cm的正方形纸,按如图所示的裁剪方式剪掉各边上的四个三角形后,可恰好无缝地做成一个圆柱体的外包装盒,设圆柱体的底面半径为r,则它的高h= ▲ (用r的代数式表示)
任务2
在上图中,若已知该圆柱体外包装盒的材料损耗率为16%,求这个圆柱体的底面半径r
任务3
现利用两块同样大小的正方形纸板,按如图方式裁剪后,可包装两个高分别为4和2的圆柱体,发现这两个圆柱体的体积恰好相等.求第一个圆柱体的底面半径.(圆柱体的体积=底面积×高)