①a2b2+h4=(a2+b2+1)h2;②b4+c2h2=b2c2;③由,,可以构成三角形;④直角三角形的面积的最大值是 .
2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽弦图它是由四全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形 的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,下列说法:
①a2+b2=13;②b2=1;③a2﹣b2=12;④ab=6.
其中正确结论序号是
如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的点C有 个.
如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么(a+b)2的值为
求:(1)a、b、c的值;
(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.
如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船沿哪个方向航行吗?
如图,点C在线段BD上,AC⊥BD,CA=CD,点E在线段CA上,且满足DE=AB,连接DE并延长交AB于点F.
(1)求证:DE⊥AB;
(2)若已知BC=a,AC=b,AB=c,设EF=x,则△ABD的面积用代数式可表示为;你能借助本题提供的图形,证明勾股定理吗?试一试吧.
[材料阅读]平面内两点M(x1 , y1),N(x2 , y2),则由勾股定理可得,这两点间的距离MN= .
例如,如图1,M(3,1),N(,-2),则MN= .
[直接应用]