①若它的解集是1<x≤3,则a=7;
②当a=3,不等式组无解;
③若它的整数解仅有3个,则a的取值范围是11≤a<13;
④若它有解,则a>3.
其中正确的结论个数( )
例:已知方程2x-3=1与不等式x+3>0,当x=2时,同时成立,则称“x=2”是方程2x-3=1与不等式x+3>0的“理想解”.
如何设计礼品盒制作方案
素材1
七年级数学兴趣小组计划制作底面为等边三角形的直三棱柱有盖礼品盒,每个礼品盒由3个形状、大小完全相同的小长方形侧面(A型号)和2个形状、大小完全相同的等边三角形底面(B型号)组成(如图1所示)。而A、B两种型号纸板可由一个大长方形硬纸板裁剪得到,具体裁剪方法见下面的裁法一、裁法二。
素材2
现有大长方形硬纸板n张.(说明:裁剪后的余料不可以再使用.)
问题解决
任务1
初探
方案
探究一:按素材1的裁剪方法,若x张大长方形硬纸板裁剪A型号纸板,y张大长方形硬纸板裁剪B型号纸板,所裁剪的A、B型纸板恰好用完。
型号
裁法
(裁法一)
(裁法二)
合计
大长方形硬纸板x(张)
大长方形硬纸板y(张)
▲
A型号(张数)
2x
0
B型号(张数)
若n=13,
(1) 完成右边填表;
(2)最多能做多少个礼品盒?
任务2
反思
探究二:
若n=70,按素材1的裁剪方法分别裁剪出A、B型纸板,请问最多能做多少个礼品盒?并说明理由。
任务3
优化
探究三:为不浪费纸板,进行了裁剪再设计:
首先从n张大长方形硬纸板中选出1张大长方形纸板裁剪出一张A型和一张B型纸板(见裁法三),然后从剩余的纸板中按素材1的方法继续裁剪出A、B型纸板,所裁剪的A、B型纸板恰好用完,若n在10张至30张之间(包括边界),则n的值为 ▲ 。(填空)