组卷题库 > 初中数学试卷库
试题详情
阅读下面材料:如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2= 交于A(1,3)和B(﹣3,﹣1)两点,观察图象可知:①当x=﹣3或1时,y1=y2;②当﹣3<x<0或x>1时,y1>y2;即通过观察函数的图象,可以得到不等式ax+b> 的解集.

有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.

艾斯柯同学类比以上知识的研究方法,用函数与方程的思想对不等式的解法进行了探究,请将他下面的②③④补充完整:

①当x=0时,原不等式不成立:当x>0时,原不等式可以转化为x2+4x﹣1> ;当x<0时,原不等式可以转化为x2+4x﹣1<

②构造函数,画出图象

设y3=x2+4x﹣1,y4= 在同一坐标系中分别画出这两个函数的图象.

双曲线y4= 如图2所示,请在此坐标系中直接画出抛物线y3=x2+4x﹣1(可不列表);

③利用图象,确定交点横坐标

观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为

④借助图象,写出解集

结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为

知识点
参考答案
采纳过本试题的试卷
教育网站链接