组卷题库 > 初中数学试卷库
试题详情
阅读:对于函数y=ax2+bx+c(a≠0),当t1≤x≤t2时,求y的最值时,主要取决于对称轴x=﹣ 是否在t1≤x≤t2的范围和a的正负:①当对称轴x=﹣ 在t1≤x≤t2之内且a>0时,则x=﹣ 时y有最小值,x=t1或x=t2时y有最大值;②当对称轴x=﹣ 在t1≤x≤t2之内且a<0时,则x=﹣ 时y有最大值,x=t1或x=t2时y有最小值;③当对称轴x=﹣ 不在t1≤x≤t2之内,则函数在x=t1或x=t2时y有最值.

解决问题:

设二次函数y1=a(x﹣2)2+c(a≠0)的图象与y轴的交点为(0,1),且2a+c=0.

知识点
参考答案
采纳过本试题的试卷
教育网站链接