组卷题库 > 高中数学试卷库
试题详情
材料1:三棱锥有4个顶点,6条棱,4个面;正方体有8个顶点,12条棱,6个面;三棱柱有个6顶点,9条棱,5个面;...,通过观察发现:这些几何体的顶点数、棱数及面数都满足简单的规律:;在此基础上瑞士数学家欧拉证明了对于任意简单多面体,其顶点数、棱数及面数都满足多面体欧拉公式.所谓简单多面体指的是同胚于球面的多面体(同胚可以简单理解为如果在一个多面体内部吹气,它能膨胀变为一个球,那么可以认为它与球同胚).正多面体是指多面体的各个面都是全等的正多边形,并且各个多面角(多面角是指有公共端点且两两不共线的条射线,以及相邻两条射线间的平面部分所组成的图形,例如日常生活中我们看到的墙角就是一个特殊的三面角)都是全等的多面角.例如,正四面体的四个面都是全等的三角形,每个顶点有一个三面角,共有四个三面角,可以完全重合,也就是说它们是全等的.正四面体、正六面体、正八面体、正十二面体、正二十面体分别如图所示.我们可以看到,正多面体每个顶点处有相同数量的棱相交,每一条棱处有两个面相交.

材料2:1996年诺贝尔化学奖授予对发现C60有重大贡献的三位科学家,C60是由60个C原子构成的分子,它是形如足球的多面体,这个多面体有60个顶点,以每一个顶点为端点都有三条棱,面的形状只有五边形和六边形;

知识点
参考答案
采纳过本试题的试卷
教育网站链接