已知函数y1=x2与函数y2=-x+3的图象大致如图.若y1≤y2则自变量的取值范围是( ).
已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )
(1)x2﹣3x﹣1=0.
(2)x2+4x﹣2=0.
(1)求m的取值范围;
(2)当m取满足条件的最大整数时,求方程的根.
在平面直角坐标系中,△ABC的顶点坐标是A(﹣2,3),B(﹣4,﹣1),C(2,0).点P(m,n)为△ABC内一点,平移△ABC得到△A1B1C1 , 使点P(m,n)移到P(m+6,n+1)处.
(1)请直接写出点A1 , B1 , C1的坐标;
(2)将△ABC绕坐标点C逆时针旋转90°得到△A2B2C,画出△A2B2C;
(3)直接写出△ABC的面积.
如图,已知抛物线y=ax2﹣4x+c经过点A(0,﹣6)和B(3,﹣9).
(1)求出抛物线的解析式;
(2)写出抛物线的对称轴方程及顶点坐标;
(3)点P(m,m)与点Q均在抛物线上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q的坐标;
(4)在满足(3)的情况下,在抛物线的对称轴上寻找一点M,使得△QMA的周长最小.
(Ⅰ)求y与x的函数关系式,并直接写出自变量x的取值范围;求x为何值时y的值为1920?
(Ⅱ)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?
某住宅小区在住宅建设时留下一块1798平方米的空地,准备建一个矩形的露天游泳池,设计如图所示,游泳池的长是宽的2倍,在游泳池的前侧留一块5米宽的空地,其它三侧各保留2米宽的道路及1米宽的绿化带
(1)请你计算出游泳池的长和宽;
(2)若游泳池深3米,现要把池底和池壁(共5个面)都贴上瓷砖,请你计算要贴瓷砖的总面积.
如图,已知抛物线y=x2+bx+c与直线y=﹣x+3交于A、B两点,点A 在y轴上,点B在x轴上,抛物线与x轴的另一交点为C,点P在点B右边的抛物线上,PM⊥x轴交直线AB于M.
(1)求抛物线解析式.
(2)当PM=2BC时,求M的坐标.
(3)点P运动过程中,△APM能否为等腰三角形?若能,求点P的坐标,若不能说明理由.
抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.