喜爱打篮球
不喜爱打篮球
合计
男生
20
5
25
女生
10
15
30
50
则至少有( )的把握认为喜爱打篮球与性别有关.
①从匀速传递的产品流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;
③若数据x1 , x2 , x3 , …,xn的方差为1,则2x1 , 2x2 , 2x3 , …,2xn的方差为2;
④对分类变量X与Y的随机变量K2的观测值K来说,K越小,判断“X与Y有关系”的把握程度越大.
其中真命题的个数为( )
Ⅱ
类1
类2
Ⅰ
类A
a
b
类B
c
d
P(K2≥k0)
0.100
0.050
0.025
0.010
0.001
k0
2.706
3.841
5.024
6.635
10.828
在验证吸烟与否与患肺炎与否有关的统计中,根据计算结果,认为这两件事情无关的可能性不足1%,那么 的一个可能取值为( )
某高校《统计》课程的教师随机给出了选该课程的一些情况,具体数据如下:
非统计专业
统计专业
男
13
女
7
为了判断选修统计专业是否与性别有关,根据表中数据,得 ,因为 ,所以可以判定选修统计专业与性别有关.那么这种判断出错的可能性为( )
y1
y2
总计
x1
a+b
x2
c+d
a+c
b+d
a+b+c+d
则下列说法中正确的是( )
晚上
白天
45
A
92
B
35
C
98
D
180
喜欢数学课
不喜欢数学课
60
90
110
150
200
经计算K2≈6.06,根据独立性检验的基本思想,约有(填百分数)的把握认为“性别与喜欢数学课之间有关系”.
附:
P(K2≥k0)
患慢性气管炎
未患慢性气管炎
吸烟
43
162
205
不吸烟
121
134
56
283
339
根据列联表数据,求得K2 = .
近几年出现各种食品问题,食品添加剂会引起血脂增高、血压增高、血糖增高等疾病.为了解三高疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:
患三高疾病
不患三高疾病
6
36
下面的临界值表供参考:
0.15
0.10
0.05
0.005
2.072
7.879
(参考公式 ,其中 )
为考察高中生的性别与喜欢数学课程之间的关系,在某学校高中生中随机抽取了250名学生,得到如图的二维条形图.
总成绩好
总成绩不好
数学成绩好
数学成绩不好
(P(K2≥3.841)≈0.05,P(K2≥6.635)≈0.01)
在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕机的也是28人,而女乘客晕机为28人,不会晕机的为56人,
其中 为样本容量。
0.50
0.40
0.25
0.455
0.708
1.323
某工厂有25周岁以上(含25周岁)工人300名,25周岁以 下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“ 25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组: , , , , 分别加以统计,得到如图所示的频率分布直方图.
附表:
P( )
0 .010
k
,(其中 )
某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高二年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名,现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.
分数段
3
9
18
4
2
附表及公式:
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,测试成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.