把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( )
如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为( )
①F,R,P,J,L,G,( )
②H,I,O,( )
③N,S,( )
④B,C,K,E,( )
⑤V,A,T,Y,W,U,( )
如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是( )
如图,桌面上有M、N两球,若要将M球射向桌面的任意一边,使一次反弹后击中N球,则4个点中,可以瞄准的是( )
下列四个图案中,具有一个共有性质.则下面四个图案中,满足上述性质的一个是( )
如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的( )
如图,以平面镜AD和DC为两个侧面的一个黑盒子的另一个侧面BC上开有一个小孔P , 一位观察者在盒外沿与BC平行方向走过时,则通过小孔能几次看到光源S所发出的光线( )
观察图形 …并判断照此规律从左到右第四个图形是( )
数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题.如图所示,∠1=∠2,若∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1等于.
如图是一个经过改造的台球桌面的示意图,图中四个角上的黑色部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反弹),那么该球最后将落入的球袋是号袋(填球袋的编号).
如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内,沿着棋子对称跳行,跳行一次称为一步.已知点A为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为步.
小强和小勇想利用课本上学过的知识来进行台球比赛:小强把白球放在如图所示的位置,想通过击打白球撞击黑球,使黑球撞AC边后反弹进F洞;想想看,小强这样打,黑球能进F洞吗?请用画图的方法验证你的判断,并说出理由.
如图,在长方形的台球桌面上,选择适当的角度打击白球,可以使白球经过两次反弹后将黑球直接撞入袋中,此时∠1=∠2,∠3=∠4,并且∠2+∠3=90°,∠4+∠5=90°.如果黑球与洞口的连线和台球桌面边缘的夹角∠5=40°,那么∠1应该等于多少度才能保证黑球准确入袋?请说明理由.
燕子风筝的骨架如图所示,它是以直线L为对称轴的轴对称图形.已知∠1=∠4=45°,求∠2和∠5的度数.
指出下列图形中的轴对称图形,并找出它们的对称轴.
指出下列图形中的轴对称图形,是轴对称图形的画出对称轴.