如图,在Rt△ABC中,∠A=90°,BC= .以BC的中点O为圆心的圆分别与AB、AC相切于D、E两点,则 的长为 ( )
如图是按 的比例画出的一个几何体的三视图,则该几何体的侧面积是( )
如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为( )
如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的地面圆的周长分别记作l1 , l2 , 侧面积分别记作S1 , S2 , 则( )
cm2 .
如图,小明自制一块乒乓球拍,正面是半径为 的 , ,弓形 (阴影部分)粘贴胶皮,则胶皮面积为.
如图,扇形纸扇完全打开后,外侧两竹条AB,AC的夹角为120°,AB长为30cm,则
弧BC的长为cm(结果保留 )
cm2 . (结果保留π)
如图, 为 的直角边 上一点,以 为半径的 与斜边 相切于点 ,交 于点 .已知 , .
(Ⅰ)若AB=4,求 的长;
(Ⅱ)若 = ,AD=AP,求证:PD是⊙O的切线.
(Ⅰ)试判断直线BC与⊙O的位置关系,并说明理由;
(Ⅱ)若BD=2 ,BF=2,求阴影部分的面积(结果保留π).