小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是.
如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当 = 时,四边形ADFE是平行四边形.
如图,在正方形ABCD中,点E,F分别在边BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面积等于.
如图,已知等边△ABC,D是边BC的中点,过D作DE∥AB于E,连接BE交AD于D1;过D1作D1E1∥AB于E1 , 连接BE1交AD于D2;过D2作D2E2∥AB于E2 , …,如此继续,若记S△BDE为S1 , 记 为S2 , 记 为S3…,若S△ABC面积为Scm²,则Sn=cm²(用含n与S的代数式表示)
运动项目
频数(人数)
频率
篮球
30
0.25
羽毛球
m
0.20
乒乓球
36
n
跳绳
18
0.15
其它
12
0.10
请根据以上图表信息解答下列问题:
如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.
如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)
如图,直线y=ax+1与x轴、y轴分别相交于A、B两点,与双曲线y= (x>0)相交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(﹣2,0).
如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.
如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).
如图,矩形ABCD中,AB=6,BC=8,点E是射线CB上的一个动点,把△DCE沿DE折叠,点C的对应点为C′.