在水平轨道上有一弹簧左端系于A点,右端与质量为m的小球接触但不连接。现用外力推动小球将弹簧压缩至P点保持静止,此时弹性势能为E
P=mgs(s为一定值)。P、B之间的距离为2.5s,小球与水平轨道的动摩擦因数为µ=0.1,静止释放弹簧,小球沿水平轨道向右运动从DB进入圆弧轨道,如图所示。BC是一段竖直墙面,DEF是固定在竖直平面内的一段光滑绝缘圆弧轨道,轨道上端D点的切线水平,B、D间距很小,可看作重合的点。圆心O与轨道下端F的连线与竖直墙面的夹角为
。在BC右边整个空间有水平向左、大小为F
0=0.75mg的恒定风力,小球进入圆孤轨道之后恰好能沿着轨道DEF运动,一段时间后从轨道下端F处脱离,最后打在竖直墙面BC的C点。已知重力加速度为g,sin
=0.8,求: