①相等的角是对顶角; ②在同一平面内,若a∥b,b∥c,则a∥c;
③同旁内角互补; ④互为邻补角的两角的角平分线互相垂直.
如图所示,
直线AD与AB,CD分别相交于点A,D,与EC,BF分别相交于点H,G,已知∠1=∠2,∠B=∠C.
求证:∠A=∠D.
证明:∵∠1=∠2,(已知)∠2=∠AGB()
∴∠1=
∴EC∥BF()
∴∠B=∠AEC()
又∵∠B=∠C(已知)
∴∠AEC=()
∴()
∴∠A=∠D()