已知:如图AB⊥BC于B,CD⊥BC于C,∠1=∠2,求证:BE∥CF.
证明:∵AB⊥BC于B,CO⊥BC于C(已知)
∴∠1+∠3=90°,∠2+∠4=90°
∴∠1与∠3互余,∠2与∠4互余
又∵∠1=∠2( ▲ )
∴ ▲ = ▲ ( ▲ )
∴BE∥CF( ▲ )