在进行二次根式运算时,形如 一样的式子,我们可以将其进一步化简: = = ,以上这种化简的步骤叫做分母有理化.
基本不等式 ≤ (a>0,b>0),当且仅当a=b时等号成立,它是解决最值问题的有力工具.
例如:在x>0的条件下,当x为何值时,x+ 有最小值,最小值是多少?
解:∵x>0, >0∴ ≥ ,即 ≥2 ,∴ ≥2
当且仅当x= ,即x=1时,x+ 有最小值,最小值为2.
请根据阅读材料解答下列问题:
材料一:平方运算和开方运算是互逆运算.如a2±2ab+b2=(a±b)2 , 那么 ,如何将双重二次根式 化简.我们可以把 转化为 完全平方的形式,因此双重二次根式 得以化简.
材料二:在直角坐标系xOy中,对于点P(x,y)和Q(x,y’)给出如下定义:若 则称点Q为点P的“横负纵变点”.例如:点(3,2)的“横负纵变点”为(3,2),点(﹣2,5)的“横负纵变点”为(﹣2,﹣5).问题:
细心观察图形,认真分析下列各式,然后解答问题:
( )2+1=2,S1= ;( )2+1=3,S2= ;( )2+1=4,S3= ;….
如图1,已知点A(a,0),B(0,b),且a、b满足 ,▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线 经过C、D两点.
如图,在函数 的图象上任取两点 、 向坐标轴作垂直,连接垂足 、 或 、 ,则一定有如下结论: , .