①如果 , ;那么 ②如果 ;那么 ③如果 ,那么 ;
④如果 ,那么 .
解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:
解∵x﹣y=2,∴x=y+2.
又∵x>1,∴y+2>1.即y>﹣1.
又∵y<0,∴﹣1<y<0.…①
同理得:1<x<2. …②
由①+②得﹣1+1<y+x<0+2
∴x+y的取值范围是0<x+y<2
请按照上述方法,完成下列问题:已知x﹣y=3,且x>2,y<1,则x+y的取值范围.
①在不等式的两边都加上(或减去)同一个整式,不等号的方向不变;
②在不等式的两边都乘同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等式的方向改变.
请解决以下两个问题:
若a﹣b>0,则a>b;若a﹣b=0,则a=b;若a﹣b<0,则a<b.反之也成立.这种比较大小的方法称为“求差法比较大小”.请运用这种方法尝试解决下面的问题:
求:
大家知道 是无理数,而无理数是无限不循环小数,因此 的小数部分我们不可能全部地写出来,但是由于1< <2,所以 的整数部分为1,将 减去其整数部分1,差就是小数部分 ﹣1,根据以上的内容,解答下面的问题: