①若x为整数,为负整数,则x=-3;②69;③若分式拆分成一个整式与一个真分式(分子为整数)的和(差)的形式为:5m-11(整式部分对应等于5m-11,真分式部分对应等于),则m2+n2+mn的最小值为27.
分母中含有未知数的不等式叫分式不等式.如: >0; <0等.那么如何求出它们的解集呢?
根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:
①若a>0,b>0,则 >0;若a<0,b<0,则 >0;
②若a>0,b<0,则 <0;若a<0,b>0,则 <0.
反之①若 >0,则 或
②若 <0,则或.
根据上述规律,求不等式 >0的解集.
x
…
-3
-2
-1
1
2
3
y
2.83
1.73
0
小聪看了一眼就说:“你画的图象肯定是错误的.”
请回答:
①小聪判断的理由是.
②当时,x的值为.
③请写出函数的一条性质:.
尺规作图:作Rt△ABC,使其斜边AB=c,一条直角边BC=a.已知:如图1,正比例函数和反比例函数的
图象分别交于M、N两点.
要求:在y轴上求作点P,使得∠MPN为直角.
小丽的作法如下:如图2,以点O为圆心,以OM长为半径作⊙O,
⊙O与y轴交于P1、P2两点,则点P1、P2即为所求.
老师说:“小丽的作法正确.”
请回答:小丽这样作图的依据是
材料:在学习绝对值时,我们知道了绝对值的几何意义,如表示6、3在数轴上对应的两点之间的距离; , 所以表示6、在数轴上对应的两点之间的距离; , 所以表示5在数轴上对应的点到原点的距离。
【材料1】两个含有二次根式而非零的代数式相乘,如果它们的积不含二次根式,那么这两个代数式互为有理化因式.
例如: , 我们称的一个有理化因式是 .
【材料2】如果一个代数式的分母中含有二次根式,通常可将分子、分母同乘分母的有理化因式,使分母中不含根号,这种变形叫做分母有理化.
例如: .
问题探究:
已知多项式(a+4)x3+10x2﹣5x+3是关于x的二次多项式, 且二次项系数为b,数轴上两点A,B对应的数分别为a,b.
配方法是初中数学中经常用到的一种重要方法,学好配方法对我们学好数学有很大的帮助,所谓配方就是将某一个多项式变形为一个完全平方式,变形一定要恒等.
例如,解方程x2-4x+4=0,有(x-2)2=0,
∴x=2.
再如,由x2-4x+y2-6y+13=0得:
(x2-4x+4)+(y2-6y+9)=0,
即:(x-2)2+(y-3)2=0,
∴x=2,y=3.
根据上述材料解答下列各题:
例如:解方程 .
解: ,
在数轴上与原点距离为的点对应的数为 , 即该方程的解为 .
【理解应用】根据绝对值的几何意义可以解一些绝对值不等式.
我们定义:形如“ , , , ”为非负数的不等式叫做绝对值不等式,能使一个绝对值不等式成立的所有未知数的值称为绝对值不等式的解集.
由图可以得出:绝对值不等式的解集是或 ,
绝对值不等式的解集是 .
例如:解不等式 .
解:如图 , 首先在数轴上找出的解,即到的距离为的点对应的数为 , , 则的解集为到的距离大于的点对应的所有数,所以原不等式的解集为或 .
参考阅读材料,解答下列问题:
请根据上述材料解决下列问题:
方程x+=2+的解为x1=2,x2=;
方程x+=3+的解为x1=3,x2=;
方程x+=4+的解为x1=4,x2=
……
在数轴上,表示一个点;在平面直角坐标系中,表示一条直线;以二元一次方程的所有解为坐标的点组成的图形就是一次函数的图象,它也是一条直线.
如图1,在平面直角坐标系中,不等式表示一个平面区域,即直线及其左侧的部分;
如图2,不等式也表示一个平面区域,即直线及其下方的部分.
请根据以上材料回答问题:
阅读材料:
如图1,四边形是矩形,是等腰直角三角形,记为、为 , 若 , 则 .
证明:设 , ∵ , ∴ ,
易证
∴ ,
∴
若时,当 , 则 .
同理:若时,当 , 则 .
根据上述材料,完成下列问题:
如图2,直线与反比例函数的图象交于点 , 与轴交于点 . 将直线绕点顺时针旋转后的直线与轴交于点 , 过点作轴于点 , 过点作轴于点 , 已知 .
例题:求多项式x2﹣4x+5的最小值.
解:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1,
因为(x﹣2)2≥0,所以(x﹣2)2+1≥1.
当x=2时,(x﹣2)2+1=1.因此(x﹣2)2+1有最小值,最小值为1,即x2﹣4x+5的最小值为1.
通过阅读,理解材料的解题思路,请解决以下问题:
如果函数 满足:对于自变量 取值范围内的任意 , ,
( 1 )若 ,都有 ,则称 是增函数;
( 2 )若 ,都有 ,则称 是减函数.
例题:证明函数 是增函数.
证明:任取 ,且 ,
则
∵ 且 ,
∴ ,即 ,
∴函数 是增函数.
根据以上材料解答下列问题: