小明在求两位数的平方时,可以用“列竖式”的方法进行计算,求解过程如图1所示,34的平方中,首数字3的平方对应09,尾数字4的平方对应16,….
任意五个连续整数的平方和是5的倍数.
【验证】
整体代换是一个重要的数学思想,有着广泛的应用.例如:计算4(a+b)-7(a+b)+(a+b)时可将(a+b)看成一个整体,合并同类项得-2(a+b),再利用分配律去括号得-2a-2b.同时,我们也知道,代数的基本要义就是用字母表示数,使之更具一般性.所以,在计算a(a+b)时,同样可以利用分配律得
解决问题:
例如,分解因式:x2+2x-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1);求代数式2x2+4x-6的最小值:2x2+4x-6=2(x2+2x-3)=2(x+1)2-8,可知当x=-1时,2x2+4x-6有最小值,最小值是-8.根据阅读材料,用配方法解决下列,问题:
例:用1张A卡片,2张B卡片,1张C卡片拼成如图2的图形,用两种方法表示该图形的面积,可以得到等式 , 这种把一个多项式化成几个整式的积的形式,叫做因式分解.
解:把代入 , 发现此多项式的值为0,由此确定中有因式 , 可设为常数),通过展开多项式或代入合适的的值即可求出的值.我们把这种分解因式的方法叫“试根法”.
根据以上阅读材料,完成下列问题:
分解因式:
解:设 , 则原式
再将还原,得到:原式
上述解题中用到的是“整体思想”,它是数学中常用的一种思想,请你用整体思想解决下列问题:
材料:一个三位数(百位数为a,十位数为b,个位数为c),若a+c=b,则称这个三位数为“协和数”,同时规定c=(k≠0),k称为“协和系数”,如264,因为它的百位上数字2与个位数字4之和等于十位上的数字6,所有264是“协和数”,则“协和数”k=2×4=8.