嘉嘉:
琪琪:
【问题】解分式方程: ,
【小明解答的部分 】解:设 ,则有 ,故原方程可化为 ,去分母并移项,得 .
【接龙 】
将分式 拆分成一个整式与一个分式(分子为整数)的和的形式.
解:由分母为x2﹣1,可设x4+x2﹣3=(x2﹣1)(x2+a)+b.
则x4+x2﹣3=(x2﹣1)(x2+a)+b=x4﹣x2+ax2﹣a+b=x4+(a﹣1)x2﹣a+b
∴ ,∴
∴ = = ﹣ =(x2+2)﹣
这样,分式 被拆分成了一个整式x2+2与一个分式﹣ 的和.
根据上述作法,将分式 拆分成一个整式与一个分式(分子为整数)的和的形式.
真分式与假分式
将两个整数相除(除数不为零)表示成分数,可能得到真分数,也可能得到假分数;类似地,分式也有真、假之分.我们规定,在分式中,当分子中整式的次数大于或等于分母中整式的次数,如 , , 称为假分式;当分子中整式的次数小于分母中整式的次数时,如 , , 称为真分式.
一些假分数可以化为带分数,即整数与真分数之和,如:;类似地,我们也可以把一些假分式化为带分式,即整式与真分式之和(或差)的形式.例:; .
任务: