已知实数、满足 , , 求和的值.
本题常规思路是将①②两式联立组成方程组,解得、的值再代入欲求值的整式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得整式的值,如由可得 , 由可得 . 这样的解题思想就是通常所说的“整体思想”.利用上面的知识解答下列问题:
将①整体代入②,得 ,
解得 ,
把代入①,得 ,
所以
这种解法称为“整体代入法”,你若留心观察,有很多方程组可采用此方法解答,请解方程组
材料:解方程组: ,
由①,得 . ③
把③代入②,得 , 解得 .
把代入③,得 .
原方程组的解为;
这种方法称为“整体代入法”,你若留心观察,有很多方程组可采用此方法解答,请用这种方法解方程组: .
材料:解方程组 时,可由①得:x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得: ,这种方法被称为“整体代入法”请用这样的方法解下列方程组:
解方程组: , 小阳在解决这个问题时,发现了一种新的方法,他把这种方法叫做“整体代入法”,解题过程如下:
解:由①得x+y=1③,将③代入②得:
例题:已知x2+xy=4,xy+y2=-1.求代数式x2-y2的值.
解:将两式相减,得(x2+xy)-(xy+y2)=4-(-1),即x2-y2=5;请用整体思想解答下列问题:
有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:
已知实数x、y满足 ①, ②,求 和 的值.
本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由 可得 ,由 可得 .这样的解题思想就是通常所说的“整体思想”.
解决问题:
若关于x、y的方程组 的解是 ,求关于x,y的方程组 的解.
解:将方程②变形为4x+10y+y=5,即2(2x+5y)+y=5.③
把①代入③,得2×3+y=5,解得y=-1.
把y=-1代入①,得x=4,
∴方程组的解决为
请用“整体代换”法解下列方程组:
整体代换是一个重要的数学思想,有着广泛的应用.例如:计算4(a+b)-7(a+b)+(a+b)时可将(a+b)看成一个整体,合并同类项得-2(a+b),再利用分配律去括号得-2a-2b.同时,我们也知道,代数的基本要义就是用字母表示数,使之更具一般性.所以,在计算a(a+b)时,同样可以利用分配律得
解:将方程8x+22y=10变形为2(4x+10y)+2y=10.③
把方程①代入③,得2×6+2y=10,解得 y=-1.
∴原方程组的解为
请你运用“整体代换”的思想解决下列问题:
有些关于方程组的问题,需要求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:
已知实数x , y满足①,②,求和的值.
本题常规思路是将①②两式联立组成方程组,解得x , y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得 , 由①+②×2可得 . 这样的解题思想就是通常所说的“整体思想”.
解方程组: .
观察发现:如果用代入消元法或加减消元法求解,运算量比较大,容易出错.如果把方程组中的看成一个整体,把看成一个整体,通过换元,可以解决问题.
已知x2y=3,求2xy(x5y2-3x3y-4x)的值.
分析:考虑到x,y的可能值较多,不能逐一代入求解,故考虑整体思想,将x2y=3整体代入.
解:2xy(x5y2-3x3y-4x)
=2x6y3-6x4y2-8x2y
=2(x2y)3-6(x2y)2-8x2y
=2×33-6×32-8×3
=54-54-24
=-24
你能用上述方法解决以下问题吗?试一试!
分解因式:
解:设 , 则原式
再将还原,得到:原式
上述解题中用到的是“整体思想”,它是数学中常用的一种思想,请你用整体思想解决下列问题:
解:将方程②变形:4x+10y+y=5即2(2x+5y)+y=5,③
把方程①代人③得:2x3+y=5,∴y=-1.
把y=-1代人①得x=4,∴方程组的解为
请你解决以下问题: