在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是( )
如图,△ABC的顶点分别为A(0,3),B(﹣4,0),C(2,0),且△BCD与△ABC全等,则点D坐标可以是( )
若关于x的分式方程 =2的解为非负数,则m的取值范围是( ).
如图,已知△ABC中,∠ACB=90°,CD为AB边上的高,∠ABC的平分线BE分别交CD、CA于点F、E,则下列结论正确的有( )
①∠CFE=∠CEF;②∠FCB=∠FBC,③∠A=∠DCB;④∠CFE与∠CBF互余.
如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为 .
max{﹣5.6,﹣8.7}=﹣5.6,max{﹣3,0}=0…那么:关于x的方程 的解是.
①画出△ABC关于y轴对称的△A1B1C1 , 并写出点B的对应点B1的坐标;
②画出△ABC向下平移3个单位的△A2B2C2 , 并写出点C的对应点C2的坐标.
如图,△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于点E,
EF⊥AB于F,EG⊥AG交AC的延长线于G.求证:BF=CG.
如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.
①求证:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度数.
根据对话的内容,请你求出小伙伴们的人数.
如图,在△ABC中,∠C=90°,∠CAD=∠BAD,DE⊥AB于E,点F在边AC上,连接DF.
(1)求证:AC=AE;
(2)若AC=8,AB=10,求DE的长;
(3)若CF=BE,直接写出线段AB,AF,EB的数量关系.
已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.
(1)求证:∠F+∠FEC=2∠A;
(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.