①两条相交的直线确定一个平面;
②两条平行的直线确定一个平面;
③一条直线和直线外一点确定一个平面.
①P∈a,P∈α⇒a⊂α
②a∩b=P,b⊂β⇒a⊂β
③a∥b,a⊂α,P∈b,P∈α⇒b⊂α
④α∩β=b,P∈α,P∈β⇒P∈b
①平面外的一条直线与这个平面最多有一个公共点;
②直线l在平面α内,可以用符号“l∈α”表示;
③已知平面α与β不重合,若平面α内的一条直线a与平面β内的一条直线b相交,则α与β相交.其中真命题的序号是.
⑴直线AC1在平面CC1B1B内.
⑵设正方形ABCD与A1B1C1D1的中心分别为O、O1 , 则平面AA1C1C与平面BB1D1D的交线为OO1.
⑶由A、C1、B1确定的平面是ADC1B1.
⑷由A、C1、B1确定的平面与由A、C1、D确定的平面是同一个平面.