组卷题库 > 高中数学试卷库
试题详情
请阅读下列材料:若两个正实数a1 , a2满足a12+a22=1,那么a1+a2 .

证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x , 恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2 .

根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为

知识点
参考答案
采纳过本试题的试卷
教育网站链接