求证:∠EGF=90°
证明:∵HG∥AB(已知)
∴∠1=∠3
又∵HG∥CD(已知)
∴∠2=∠4
∵AB∥CD(已知)
∴∠BEF+=180°
又∵EG平分∠BEF(已知)
∴∠1= ∠
又∵FG平分∠EFD(已知)
∴∠2= ∠
∴∠1+∠2= ()
∴∠1+∠2=90°
∴∠3+∠4=90°即∠EGF=90°.