命题:如图1,在正方形ABCD中,已知:∠EAF=45°,角的两边AE、AF分别与BC、CD相交于点E、F,连接EF.求证:EF=BE+DF.
证明思路:
如图2,将△ABE绕点A逆时针旋转90°至△ADE′.∵AB=AD,∠BAD=90°,∴AB与AD重合.∵∠ADC=∠B=90°,∴∠FDE′=180°,点F、D、E′是一条直线.
根据SAS,得证△AEF≌△AFE′,得EF=E′F=E′D+DF=BE+DF.