组卷题库 > 初中数学试卷库
试题详情
同余数是一个三边均为有理数的直角三角形的面积,即如果存在三个正有理数a,b,c,使得 ,且 ,则称n为同余数.如果正整数n为同余数,则称n为整同余数.由于5是三边长分别为 的直角三角形的面积,6是三边长分别为3,4,5的直角三角形的面积,7是三边长分别为 的直角三角形的面积,所以5,6,7都是同余数,且是整同余数.如何判断一个正整数是否为同余数至今尚未完全解决.关于同余数的第一个重要结论是费马(Fermat)在17世纪证明的1不是同余数.在 中,令 ,得 .因此,若正整数n是同余数,则二元三次不定方程 有有理数解;若正整数n使得二元三次不定方程 有有理数解,则n是同余数.这样,古老的同余数问题与现代的椭圆曲线 的有理点(横、纵坐标均为有理数的点)之间建立了联系.阅读上述材料,请你写出椭圆曲线 上的一个有理点坐标(x,y)=.
知识点
参考答案
采纳过本试题的试卷
教育网站链接