组卷题库 > 初中数学试卷库
试题详情
阅读下面的材料:

如果函数y=f(x)满足:对于自变量x取值范围内的任意x1 , x2

①若x1<x2 , 都有f(x1)<f(x2),则称f(x)是增函数;

②若x1<x2 , 都有f(x1)>f(x2),则称f(x)是减函数.

例题:证明函数f(x)=x2(x>0)是增函数.

证明:任取x1<x2 , 且x1>0,x2>0.

则f(x1)-f(x2)=x12-x22=(x1+x2)(x1-x2).

∵x1<x2且x1>0,x2>0,

∴x1+x2>0,x1-x2<0.

∴(x1+x2)(x1-x2)<0,即f(x1)-f(x2)<0,f(x1)<f(x2).

∴函数f(x)=x2(x>0)是增函数.

根据以上材料解答下列问题:

知识点
参考答案
采纳过本试题的试卷
教育网站链接