如图所示为一皮带传动装置,右轮半径为r,a点在它的边缘上;左轮半径为2r,b点在它的边缘上.若在传动过程中皮带不打滑,则a点与b点的向心加速度大小之比( )
一质点以匀速率在水平面上做曲线运动,其轨迹如图所示.从图中可以看出,质点在a、b、c、d四点处加速度最大的点是( )
如图所示,用皮带传动的两轮M、N半径分别是R、2R , A为M边缘一点,B距N轮的圆心距离为R , 则A、B两点角速度之比为;线速度之比为;向心加速度之比为.
如图所示,压路机后轮半径是前轮半径的3倍,A、B分别为前轮和后轮边缘上的一点,C为后轮上的一点,它离后轮轴心的距离是后轮半径的一半,则A、B、C三点的角速度之比为ωA:ωB:ωC=, 线速度之比为vA:vB:vC=, 向心加速度之比为aA:aB:aC=.
如图所示为探究质点做匀速圆周运动的向心加速度随半径变化关系实验时得到的图象,其中A为双曲线的一个分支.该实验使用了法,得到A图线是控制大小不变,研究向心加速度a与半径r的关系.得到B图线是控制 不变,研究向心加速度a与半径r的关系.
如图所示,一个大轮通过皮带拉着小轮转动,皮带和两轮之间无滑动,大轮半径是小轮半径的两倍,大轮上的一点S与转轴的距离是半径的 ,当大轮边缘上P点的向心加速度是12m/s2时,求:
如图所示,压路机大轮的半径R是小轮半径r的2倍,压路机匀速行进时,大轮边缘上A点的向心加速度是0.12m/s2 , 那么小轮边缘上的B点向心加速度是多少?大轮上距轴心的距离为的C点的向心加速度是多大?
如图所示,用内壁光滑的薄壁细圆管弯成的由半圆形APB(圆半径比细管的内径大得多)和直线BC组成的轨道固定在水平桌面上,已知APB部分的半径R=1.0m , BC段长L=1.5m . 弹射装置将一个小球(可视为质点)以v0=5m/s的水平初速度从A点弹入轨道,小球从C点离开轨道随即水平抛出,落地点D离开C的水平距离s=2.5m , 不计空气阻力,g取10m/s2 . 求
如图所示,甲、乙两物体自同一水平线上同时开始运动,甲沿顺时针方向做匀速圆周运动,圆半径为R;乙做自由落体运动,当乙下落至A点时,甲恰好第一次运动到最高点B , 求甲物体匀速圆周运动的向心加速度.