用两种方法证明“直角三角形斜边上的中线等于斜边的一半”.
已知:如图1,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.
求证:CD= AB.
证法1:如图2,在∠ACB的内部作∠BCE=∠B,
CE与AB相交于点E.
∵∠BCE=∠B,
∴.
∵∠BCE+∠ACE=90°,
∴∠B+∠ACE=90°.
又∵,
∴∠ACE=∠A.
∴EA=EC.
∴EA=EB=EC,
即CE是斜边AB上的中线,且CE= AB.
又∵CD是斜边AB上的中线,即CD与CE重合,
∴CD= AB.
请把证法1补充完整,并用不同的方法完成证法2.