①若a= ,函数g(x)无零点,则实数k的取值范围为;
②若f(x)有最小值,则实数a的取值范围是.
(Ⅰ)求f( )及f(x)的最小正周期T的值;
(Ⅱ)求f(x)在区间[﹣ , ]上的最大值和最小值.
分组(米)
频数
频率
[3.0,5.0)
0.10
[5.0,7.0)
[7.0,9.0)
[9.0,11.0)
0.20
[11.0,13.0)
0.40
[13.0,15.0)
10
合计
1.00
(Ⅰ)求参加测试的男生中“优秀生”的人数;
(Ⅱ)从参加测试男生的成绩中,根据表中分组情况,按分层抽样的方法抽取10名男生的成绩作为一个样本,再从该样本中任选2名男生的成绩,求至少选出1名男生的成绩不低于13.0米的概率;
(Ⅲ)若将这次测试的频率作为概率,从该校全体男生中随机抽取3人,记X表示3人中“优秀生”的人数,求X的分布列及数学期望.
(Ⅰ)求证:平面PCD⊥平面PAD;
(Ⅱ)求直线PB与平面PCD所成角的正弦值;
(Ⅲ)在棱CD上是否存在点M,使得AM⊥平面PBE?若存在,求出 的值;若不存在,说明理由.
(Ⅰ)若曲线y=f(x)在点(2,f(2))处的切线与x轴平行,求a的值;
(Ⅱ)若 ,求f(x)的单调区间.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过D作直线l平行于AC.若直线l′平行于BD,且与椭圆E交于不同的两点M.N,与直线l交于点P.
⑴证明:直线l与椭圆E有且只有一个公共点;
⑵证明:存在常数λ,使得|PD|2=λ|PM|•|PN|,并求出λ的值.
①若T=∅,则ST=0;
②若T={n1 , n2 , …,nk},则ST=a +a +…+a .
例如:当an=2n,T={1,3,5}时,ST=a1+a3+a5=2+6+10=18.
已知等比数列{an}(n∈N*),a1=1,且当T={2,3}时,ST=12,求数列{an}的通项公式.