(Ⅰ)求a 的值;
(Ⅱ)先将函数y=f (x) 的图象上点的纵坐标不变,横坐标缩小为原来的 ,再将所得的图象向右平移 个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间[0, ]上所有根之和.
(Ⅰ)若高三获得冠军概率为 ,求P.
(Ⅱ)记高三的得分为X,求X的分布列和期望.
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)E是棱CC1所在直线上的一点,若二面角A﹣B1E﹣B的正弦值为 ,求CE的长.
(Ⅰ)证明:抛物线C在N 点处的切线与AB 平行;
(Ⅱ)是否存在实数k,使以AB为直径的圆M经过N点?若存在,求出k的值;若不存在,请说明理由.
(Ⅰ)若f(x)在区间[2,3]上单调递增,求实数a的取值范围;
(Ⅱ)设f(x)的导函数f′(x)的图象为曲线C,曲线C上的不同两点A(x1 , y1)、B(x2 , y2)所在直线的斜率为k,求证:当a≤4时,|k|>1.
(1)证明:| |< ;
(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.