组卷题库 > 初中数学试卷库

2022年中考数学二轮专题复习-规律探索

作者UID:18421373
日期: 2024-12-24
二轮复习
单选题
填空题
计算题
解答题
问题的提出:n个平面最多可以把空间分割成多少个部分?

问题的转化:由n上面问题比较复杂,所以我们先来研究跟它类似的一个较简单的问题:

n条直线最多可以把平面分割成多少个部分?

如图1,很明显,平面中画出1条直线时,会得到1+1=2个部分;所以,1条直线最多可以把平面分割成2个部分;

如图2,平面中画出第2条直线时,新增的一条直线与已知的1条直线最多有1个交点,这个交点会把新增的这条直线分成2部分,从而多出2个部分,即总共会得到1+1+2=4个部分,所以,2条直线最多可以把平面分割成4个部分;

如图3,平面中画出第3条直线时,新增的一条直线与已知的2条直线最多有2个交点,这2个交点会把新增的这条直线分成3部分,从而多出3个部分,即总共会得到1+1+2+3=7个部分,所以,3条直线最多可以把平面分割成7个部分;

平面中画出第4条直线时,新增的一条直线与已知的3条直线最多有3个交点,这3个交点会把新增的这条直线分成4部分,从而多出4个部分,即总共会得到1+1+2+3+4=11个部分,所以,4条直线最多可以把平面分割成11个部分;…

①请你仿照前面的推导过程,写出“5条直线最多可以把平面分割成多少个部分”的推导过程(只写推导过程,不画图);

②根据递推规律用n的代数式填空:n条直线最多可以把平面分割成几个部分.

问题的解决:借助前面的研究,我们继续开头的问题;n个平面最多可以把空间分割成多少个部分?

首先,很明显,空间中画出1个平面时,会得到1+1=2个部分;所以,1个平面最多可以把空间分割成2个部分;

空间中有2个平面时,新增的一个平面与已知的1个平面最多有1条交线,这1条交线会把新增的这个平面最多分成2部分,从而多出2个部分,即总共会得到1+1+2=4个部分,所以,2个平面最多可以把空间分割成4个部分;

空间中有3个平面时,新增的一个平面与已知的2个平面最多有2条交线,这2条交线会把新增的这个平面最多分成4部分,从而多出4个部分,即总共会得到1+1+2+4=8个部分,所以,3个平面最多可以把空间分割成8个部分;

空间中有4个平面时,新增的一个平面与已知的3个平面最多有3条交线,这3条交线会把新增的这个平面最多分成7部分,从而多出7个部分,即总共会得到1+1+2+4+7=15个部分,所以,4个平面最多可以把空间分割成15个部分;

空间中有5个平面时,新增的一个平面与已知的4个平面最多有4条交线,这4条交线会把新增的这个平面最多分成11部分,而从多出11个部分,即总共会得到1+1+2+4+7+11=26个部分,所以,5个平面最多可以把空间分割成26个部分;…

③请你仿照前面的推导过程,写出“6个平面最多可以把空间分割成多少个部分?”的推导过程(只写推导过程,不画图);

④根据递推规律填写结果:10个平面最多可以把空间分割成几个部分;

⑤设n个平面最多可以把空间分割成Sn个部分,设n-1个平面最多可以把空间分割成Sn−1个部分,前面的递推规律可以用Sn−1和n的代数式表示Sn;这个等式是Sn等于多少.

(问题)用n边形的对角线把n边形分割成(n-2个三角形,共有多少种不同的分割方案

(探究)为了解决上面的数学问题,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进转化,最后猜想得出结论.不妨假设n边形的分割方案有 种.

探究一:用四边形的对角线把四边形分割成2个三角形,共有多少种不同的分割方案?如图①,图②,显然,只有2种不同的分割方案.所以,

探究二:用五边形的对角线把五边形分割成3个三角形,共有多少种不同的分割方案?不妨把分割方案分成三类:

第1类:如图③,用点 连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有 种不同的分割方案,所以,此类共有 种不同的分割方案.

第2类:如图④,用点 连接,把五边形分割成3个三角形,有1种不同的分割方案,可视为 种分割方案.

第3类:如图⑤,用点 连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有f(4)种不同的分割方案,所以,此类共有f(4)种不同的分割方案.

所以, (种)

探究三:用六边形的对角线把六边形分割成4个三角形,共有多少种不同的分割方案?不妨把分割方案分成四类:

第1类:如图⑥,用 连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有 种不同的分割方案,所以,此类共有 种不同的分割方案.

第2类:如图⑦,用 连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有 种不同的分割方案.所以,此类共有 种分割方案.

第3类:如图⑧,用 连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有 种不同的分割方案.所以,此类共有 种分割方案.

第4类:如图,用 连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有 种不同的分割方案.所以,此类共有 种分割方案.

所以,

(种)

探究四:用七边形的对角线把七边形分割成5个三角形,则 的关系为 ,共有种不同的分割方案.

……

(结论)用 边形的对角线把 边形分割成 个三角形,共有多少种不同的分割方案 ?(直接写出 之间的关系式,不写解答过程)

(应用)用九边形的对角线把九边形分割成7个三角形,共有多少种不同的分割方案?(应用上述结论中的关系式求解)

试卷列表
教育网站链接