在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(﹣2,﹣2),(
,
),…都是“梦之点”,显然“梦之点”有无数个.
(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;
(2)函数y=3kx+k﹣ , y=nx+2(k,n为常数)的图象上存在相同的“梦之点”,请求出“梦之点”的坐标和n的值;
(3)若二次函数y=ax2﹣ax+1(a是常数)的图象上存在两个“梦之点”A(x1 , x1),B(x2 , x2),且|x1﹣x2|=2,试求二次函数的顶点坐标.