马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是…,
,
,
,
, …,那么
时刻的状态的条件概率仅依赖前一状态
, 即
.
现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.
假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为 , 且每局赌赢可以赢得1元,每一局赌徒赌输的概率为 , 且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:一种是手中赌金为0元,即赌徒输光;一种是赌金达到预期的B元,赌徒停止赌博.记赌徒的本金为 , 赌博过程如下图的数轴所示.
当赌徒手中有n元( , )时,最终输光的概率为 , 请回答下列问题: