①当 时,有唯一公共点;②若 为整数,则仅当 的值为4或5或6或7时,才有唯一公共点;③若 为整数,则当 的值为1或2或3时,有两个公共点;④当 时,有两个公共点.其中正确的结论有( )
x
…
﹣2
﹣1.5
﹣1
﹣0.5
0
0.5
1
1.5
2
y
0.75
﹣0.25
m
探究:设A、P两点间的距离为x.
如图,抛物线经过坐标轴上三点,直线过点和点 .
如图,在平面直角坐标系中,已知抛物线与轴交于、两点,与轴交于点 , 连接 .
x(米)
3.5
5
y(米)
2.25
3
小华根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小华的探究过程,请补充完整:
小聪测量黑球减速后的运动速度(单位:cm/s)、运动距离(单位:cm)随运动时间(单位:S)变化的数据,整理得下表.
运动时间t/s
4
运动速度y/cm/s
10
9.5
9
8.5
8
运动距离y/cm
9.75
19
27.7
36
小聪探究发现,黑球的运动速度v与运动时间t之间成一次函数关系,运动距离y与运动时间t之间成二次函数关系.
如何设计跳长绳方案
素材1
图1是集体跳长绳比赛,比赛时,各队跳绳10人,摇绳2人,共计12人图2是绳甩到最高处时的示意图,可以近似的看作一条抛物线,正在甩绳的甲、乙两位队员拿绳的手间距6米,到地面的距离均为1米,绳子最高点距离地面2.5米.
素材2
某队跳绳成员有6名男生和4名女生,男生身高1.70米至1.80米,女生身高1.66米至1.69米跳长绳比赛时,可以采用一路纵队或两路纵队并排的方式安排队员位置,但为了保证安全,人与人之间距离至少0.5米
问题解决
任务1
确定长绳形状
在图2中建立合适的直角坐标系,并求出抛物线的函数表达式
任务2
探究站队方式
当该队以一路纵队的方式跳绳时,绳子能否顺利的甩过所有队员的头顶?
任务3
拟定位置方案
为了更顺利的完成跳绳,现按中间高两边低的方式居中安排站位请在你所建立的坐标系中,求出左边第一位跳绳队员横坐标的最大取值范围.
如何设计喷水装置的高度?
图1为某公园的圆形喷水池,图2是其示意图,O为水池中心,喷头A、B之间的距离为20米,喷射水柱呈抛物线形,水柱距水池中心处达到最高,高度为.水池中心处有一个圆柱形蓄水池,其底面直径为 , 高为1.8米.
如图3,拟在圆柱形蓄水池中心处建一喷水装置( , 并从点P向四周喷射与图2中形状相同的抛物线形水柱,且满足以下条件:
①水柱的最高点与点P的高度差为;
②不能碰到图2中的水柱;
③落水点G,M的间距满足:.
确定水柱形状
在图2中以点O为坐标原点,水平方向为x轴建立直角坐标系,并求左边这条抛物线的函数表达式.
探究落水点位置
在建立的坐标系中,求落水点G的坐标.
拟定喷水装置的高度
求出喷水装置的高度.
如何设计喷泉喷头的升降方案?
如图1,湖中有一个可垂直升降的喷泉,喷出的水柱呈抛物线.记水柱上某一点到喷头的水平距离为x米,到湖面的垂直高度为y米.当喷头位于起始位置时,测量得x与y的四组数据如下:
1.75
公园想设立新的游玩项目,通过升降喷头,使游船能从水柱下方通过,如图2,为避免游船被喷泉淋到,要求游船从水柱下方中间通过时,顶棚上任意一点到水柱的竖直距离均不小于0.5米.已知游船顶棚宽度为3米,顶棚到湖面的高度为2米.
确定喷泉形状
结合素材1,求y关于x的表达式.
探究喷头升降方案
为使游船按素材2要求顺利通过,求喷头距离湖面高度的最小值.
如何确定隧道中警示灯带的安装方案?
2022年10月,温州市府东路过江通道工程正式开工,建成后将成为温州瓯江第一条超大直径江底行车隧道。隧道顶部横截面可视为抛物线,如图1,隧道底部宽AB为10m,高OC为5m.
货车司机长时间在隧道内行车容易疲劳驾驶,为了安全,拟在隧道顶部安装上下长度为20cm的警示灯带,沿抛物线安装。(如图2).为了实效,相邻两条灯带的水平间距均为0.8m(灯带宽度可忽略);普通货车的高度大约为2.5m(载货后高度),货车顶部与警示灯带底部的距离应不少于50cm。灯带安装好后成轴对称分布.
确定隧道形状
在图1中建立合适的直角坐标系,求抛物线的函数表达式.
探究安装范围
在你建立的坐标系中,在安全的前提下,确定灯带安装点的横、纵坐标的取值范围.
拟定设计方案
求出同一个横截面下,最多能安装几条灯带,并根据你所建立的坐标系,求出最右边一条灯带安装点的横坐标.
如果将运动员的身体看作一点,则他在跳水过程中运动的轨迹可以看作为抛物线的一部分.建立如图2所示的平面直角坐标系xOy,运动员从点A(0,10)起跳,从起跳到入水的过程中,运动员的竖直高度y (m)与水平距离x (m)满足二次函数的关系.
【知识背景】如图,校园中有两面直角围墙,墙角内的P处有一古棵树与墙 , 的距离分别是和 , 在美化校园的活动中,某数学兴趣小组想借助围墙(两边足够长),用长的篱笆围成一个矩形花园(篱笆只围 , 两边),设.
【方案设计】设计一个矩形花园,使之面积最大,且要将古棵树P围在花园内(含边界,不考虑树的粗细).
【解决问题】思路:把矩形的面积S与边长x(即的长)的函数解析式求出,并利用函数的性质来求面积的最大值即可.
如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点处将沙包(看成点)抛出,其运动路线为抛物线:的一部分,淇淇恰在点处接住,然后跳起将沙包回传,其运动路线为抛物线:一部分.
方案一:抛物线型拱门的跨度 , 拱高PE.其中,点在轴上,.方案二,抛物线型拱门的跨度 , 拱高.其中,点在轴上, , .
要在拱门中设置高为3m的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架ABCD的面积记为S1 , 点A,D在抛物线上,边BC在ON上;方案二中,矩形框架的面积记为S2 , 点 , 在拋物线上,边在上.现知,小华已求出方案二中,当时, , 请你根据以上信息,解答下列问题:
如何设计拱桥上救生圈的悬挂方案?
图1是一座抛物线形拱桥,以抛物线两个水平最低点连线为x轴,过抛物线离地面的最高点的铅垂线为y轴建立平面直角坐标系,某时测得水面宽20m , 拱顶离水面最大距离为10m , 抛物线拱形最高点与x轴的距离为5m . 据调查 , 该河段水位在此基础上再涨1m达到最高.
问题解决:
绿化带灌溉车的操作方案
辆绿化带灌溉车正在作业,水从喷水口喷出,水流的上下两边缘可以抽象为两条抛物线的一部分:喷水口离开地面高1.6米,上边缘抛物线最高点离喷水口的水平距离为3米,高出|喷水口0.9米,下边缘水流形状与上边缘相同,且喷水口是最高点。
路边的绿化带宽4米
素材3
绿化带正中间种植了行道树,为了防治病虫害、增加行道树的成活率,园林工人给树木“打针”。针一般打在离地面1.5米到2米的高度(包含端点)。
素材1 图1为某公园的抛物线型拱桥,图2是其横截面示意图,测得水面宽度米,拱顶离水面的距离为米.
素材2 拟在公园里投放游船供游客乘坐,载重最少时,游船的横截面如图3所示,漏出水面的船身为矩形,船顶为等腰三角形.测得相关数据如下:米,米,米,米.
素材3 为确保安全,拟在石拱桥下面的P,Q两处设置航行警戒线,要求如下:
①游船底部在P,Q之间通行;
②当载重最少通过时,游船顶部E与拱桥的竖直距离至少为米.
如何设计拱桥景观灯的悬挂方案?
图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽 , 拱顶离水面 . 据调查,该河段水位在此基础上再涨达到最高.
图1 图2
为迎佳节,拟在图1桥洞前面的桥拱上悬挂长的灯笼,如图3.为了安全,灯笼底部距离水面不小于;为了实效,相邻两盏灯笼悬挂点的水平间距均为;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.
图3
确定桥拱形状
在图2中建立合适的直角坐标系,求抛物线的函数表达式.
探究悬挂范围
在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.
拟定设计方案(填空即可)
给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.
图1中有一座拱桥,图2是某抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.
为迎佳节,拟在图1桥沿前面的桥拱上悬挂40cm长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.
测试机器人行走路径
素材一
图1是某校科技兴趣小组设计的一个可以帮助餐厅上菜的机器人,该机器人能根据指令要求进行旋转和行走.如图为机器人所走的路径.机器人从起点出发,连续执行如下指令:机器人先向前直行(表示第次行走的路程),再逆时针旋转 , 直到第一次回到起点后停止.记机器人共行走的路程为 , 所走路径形成的封闭图形的面积为S .
素材二
如图2,当每次直行路程均为1(即),时,机器人的运动路径为 , 机器人共走的路程 , 由图2图3易得所走路径形成的封闭图形的面积为 .
素材三
如图4,若 , 机器人执行六次指令后回到起点处停止.
解决问题
任务
固定变量
探索变量
探索内容
任务一
直行路程
旋转角度与路程
任务二
旋转角度
若 , 求与的值.
任务三
旋转角度 , 路程
路径形成的封闭图形面积S .
若 , 请直接写出与之间的数量关系,并求出当S最大时的值.
如图1,空地上有两条互相垂直的小路OP,OQ,中间有一正方形ABCD水池,已知水池的边长为4 米,AB//OQ,AD//OP,且AB与OQ的距离为10 米,AD与OP的距离为8 米.
现利用两条小路,再购置30 米长的栅栏(图中的细实线)在空地上围出一个花圃,要求围起来的栅栏与小路相互平行(或垂直),靠小路和水池的都不需要栅栏,接口损耗忽略不计.
小明同学按如图2的设计,若EF=16米,求出花圃的面积(不包含水池的面积).
若按如图3、如图4设计方案,通过计算说明哪种方案的最大面积更大.
项目反 思
如果栅栏不一定与墙面垂直(或平行),你还能设计出比以上方案面积更大的花圃吗?某学习小组在探究的过程中,设计了方案如图5,你认为图5的最大面积与以上方案比较,哪个更大,请通过计算说明.