已知:直线l和l外一点A.
求作:点A关于l的对称点A'.
作法:①在l上任取一点P,以点P为圆心,PA长为半径作孤,交l于点B;②以点B为圆心,AB长为半径作弧,交弧AB于点A'. 点A'就是所求作的对称点.
由步骤①,得
由步骤②,得
将横线上的内容填写完整,并说明点A与A'关于直线l对称的理由.
求证:EB=FC.
求证:
求作:∠A'O'B',使得A'O'B'=∠AOB.
作法:
①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;
②画一条射线O'A',以点O'为圆心,OC长为半径画弧,交O'A'于点C';
③以点C'为圆心,CD长为半径画弧,与第②步中所画的弧相交于点D';
④过点D'画射线O'B',则∠A'O'B'=∠AOB.
根据上面的作法,完成以下问题: