定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x
0(a<x
0<b),满足f(x
0)=
,则称函数y=f(x)是[a,b]上的“平均值函数”,x
0而是它的一个均值点.
例如y=|x|是[﹣2,2]上的“平均值函数”,0就是它的均值点.给出以下命题:
①函数f(x)=sinx﹣1是[﹣π,π]上的“平均值函数”;
②若y=f(x)是[a,b]上的“平均值函数”,则它的均值点x0≤ ;
③若函数f(x)=x2+mx﹣1是[﹣1,1]上的“平均值函数”,则实数m∈(﹣2,0);
④若f(x)=lnx是区间[a,b](b>a≥1)上的“平均值函数”,x0是它的一个均值点,则lnx0< .
其中的真命题有(写出所有真命题的序号).