组卷题库
>
高中数学试卷库
2023-2024学年高中数学人教A版必修二 10.2 事件的相互独立性 同步练习
作者UID:9005209
日期: 2024-11-21
同步测试
选择题
若
,
,
, 则事件
与
的关系为( )
A、 相互独立
B、 互为对立
C、 互斥
D、 无法判断
甲、乙同时参加某次法语考试,甲、乙考试达到优秀的概率分别为0.6,0.7,两人考试相互独立,则甲、乙两人都未达到优秀的概率为( )
A、 0.42
B、 0.12
C、 0.18
D、 0.28
已知有编号为
的三个盒子,其中1号盒子内装有两个1号球,一个2号球和一个3号球;2号盒子内装有两个1号球,一个3号球;3号盒子内装有三个2号球,两个3号球.若第一次先从1号盒子内随机抽取一个球,将取出的球放入与球同编号的盒子中,第二次从该盒子中任取一个球,则在两次取球编号不同的条件下( )
A、 第二次取到1号球的概率最大
B、 第二次取到2号球的概率最大
C、 第二次取到3号球的概率最大
D、 第二次取到
号球的概率都相同
已知事件
,
, 且
,
, 如果
与
互斥,那么
, 如果
与
相互独立,那么
, 则
,
分别为( )
A、
,
B、
,
C、
,
D、
,
一个电路如图所示,A,B,C,D为4个开关,其闭合的概率均为
, 且是相互独立的,则灯亮的概率为( )
A、
B、
C、
D、
在一次考试中,小明同学将比较难的第8题、第12题、第16题留到最后做,做每道题的结果相互独立.假设小明同学做对第8、12、16题的概率从小到大依次为
,
,
, 做这三道题的次序随机,小明连对两题的概率为p,则( )
A、 p与先做哪道题次序有关
B、 第8题定为次序2,p最大
C、 第12题定为次序2,p最大
D、 第16题定为次序2,p最大
甲乙两人通过考试的概率分别为
和
, 两人同时参加考试,其中恰有一人通过的概率是( )
A、
B、
C、
D、
甲、乙两人每次射击命中目标的概率分别为
与
, 且每次射击命中与否互不影响,现两人玩射击游戏,规则如下:每次由1人进行射击,若射击一次不中,则原射击人继续射击,若射击一次命中,则换对方接替射击,且第一次由甲射击.则前4次中甲恰好射击3次的概率为( )
A、
B、
C、
D、
甲、乙两人独立地破译一份密码,密码被成功破译的概率为
, 已知甲单独破译密码的概率为
, 则乙单独破译密码的概率为( )
A、
B、
C、
D、
抛掷一红一绿两枚质地均匀的骰子,记下骰子朝上面的点数
用
表示红色骰子的点数,用
表示绿色骰子的点数,用
表示一次试验的结果
定义事件:
“
”,事件
“
为奇数”,事件
“
”,则下列结论正确的个数是
( )
与
互斥
与
对立
与
相互独立
A、
B、
C、
D、
多项选择题
袋子中有5个大小质地完全相同的球,分别标有数字1,2,3,4,5,从中有放回地依次随机摸出2个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第一次取出的球的数字是偶数”,丙表示事件“两次取出的球的数字都是偶数”,丁表示事件“两次取出的球的数字之和为6”,则( )
若
,
, 则下列说法正确的是( )
由均匀材质制成的一个正12面体,每个面上分别印有0,1,2,3,4,5,6,7,8,9,√,×投掷这个正12面体2次,把朝上一面的数字或符号作为投掷结果.则( )
已知A,B是一个随机试验中的两个随机事件,若
,
,
, 则( )
先后两次掷一枚质地均匀的骰子,A表示事件“第一次掷出的点数是5”,B表示事件“第二次掷出的点数是偶数”,C表示事件“两次掷出的点数之和是5”,D表示事件“至少出现一个奇数点”,则( )
已知事件A,B满足
,
, 则( )
填空题
某高中的独孤与无极两支排球队在校运会中采用五局三胜制(有球队先胜三局则比赛结束).第一局独孤队获胜概率为
, 独孤队发挥受情绪影响较大,若前一局获胜,下一局获胜概率增加
, 反之降低
. 则独孤队不超过四局获胜的概率为
.
甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时该队获胜,比赛结束),根据以往比赛成绩,甲队的主客场安排依次为“主主客客主客主”,设甲队主场取胜的概率为0.8,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是
.
弘扬中学有一支篮球队,甲、乙为该球队队员,已知甲、乙两名队员投篮命中的概率分别为
和
.现两人各进行一次投篮比赛,假定两人是否投中互不影响,则甲、乙两人至少有一人投中的概率为
.
已知事件A,B,C两两相互独立,若
, 则P(A)=
.
为深入学习宣传贯彻党的二十大精神,某校团委举办“强国复兴有我”——党的二十大精神知识竞答活动.某场比赛中,甲、乙、丙三位同学同时回答一道有关二十大精神知识的问题.已知甲同学答对的概率是
, 甲、丙两位同学都答错的概率是
, 乙、丙两位同学都答对的概率是
.若各同学答题正确与否互不影响.则甲、乙、丙三位同学中至少2位同学答对这道题的概率为
.
某同学高考后参加国内3所名牌大学A,B,C的“强基计划”招生考试,已知该同学能通过这3所大学A,B,C招生考试的概率分别为x,y,
, 该同学能否通过这3所大学的招生考试相互独立,且该同学恰好能通过其中2所大学招生考试的概率为
, 则该同学至少通过1所大学招生考试的概率为
.
已知
与
是独立事件,
, 给出下列式子:①
;②
;③
;④
;
其中正确的式子是
.(填序号)
甲、乙两人下围棋,若甲执黑子先下,则甲胜的概率为
;若乙执黑子先下,则乙胜的概率为
. 假定每局之间相互独立且无平局,第二局由上一局负者先下,若甲、乙比赛两局,第一局甲、乙执黑子先下是等可能的,则甲、乙各胜一局的概率为
.
解答题
甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为
和
, 求:
甲、乙、丙三人各自独立地破译某密码,已知甲、乙都译出密码的概率为
, 甲、丙都译出密码的概率为
, 乙、丙都译出密码的概率为
.
某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮,否则被淘汰.已知甲选手能正确回答第一、二、三轮的问题的概率分别为
,
,
, 乙选手能正确回答第一、二、三轮的问题的概率分别为
,
,
, 且两位选手各轮问题能否正确回答互不影响.
投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏.假设甲、乙、丙、丁是四位投壶游戏参与者,且甲、乙、丙每次投壶时,投中与不投中的机会是均等的,丁每次投壶时,投中的概率为
. 甲、乙、丙、丁每人每次投壶是否投中相互独立,互不影响.
甲、乙、丙三人组成一组,参加一个闯关游戏团体赛.三人各自独立闯关,其中甲闯关成功的概率为
, 甲、乙都闯关成功的频率为
, 乙、丙都闯关成功的概率为
, 每人闯关成功记2分,三人得分之和记为小组团体总分.
已知甲的投篮命中率为0.6,乙的投篮命中率为0.7,丙的投篮命中率为0.5.
大学毕业生小张和小李通过了某单位的招聘笔试考试,正在积极准备结构化面试,每天相互进行多轮测试,每轮由小张和小李各回答一个问题,已知小张每轮答对的概率为
, 小李每轮答对的概率为
. 在每轮活动中,小张和小李答对与否互不影响,各轮结果也互不影响.
某超市将若干个问题印在质地、大小相同的小球上,顾客每次随机抽出
个小球并回答上面的问题.若顾客第一次答对,则获得购物券并结束活动:若顾客第一次答错,就再抽一次,答对获得购物券并结束活动,答错结束活动.顾客对不同题目的回答是独立的.
甲、乙两人参加猜成语活动,每轮活动由甲、乙各猜一个成语,已知甲每轮猜对的概率为
, 乙每轮猜对的概率为
.在每轮活动中,甲和乙猜对与否互不影响,各轮结果也互不影响.
试卷列表
贵州省六盘水市2023-2024学年高一上学期1月期末质量监测数学试题
2025届湖南省衡阳市衡阳县高三一模数学试题
四川省绵阳市2025届高三第一次诊断性考试数学试题
浙江省绍兴市上虞区2023-2024学年高二上学期期末质量调测数学试题
浙江省杭州四中吴山2023-2024学年高一上学期期末数学试题
浙江省杭州第二中学2023-2024学年高二上学期期末考试数学试题
浙江省余姚市2023-2024学年高二上学期期末考试数学试卷
浙江省临平萧山联考2023-2024学年高二上学期期末数学试题
广东省江门市新会区广雅中学2024-2025学年高二上学期9月月考数学试题A卷
广西柳州市第六中学2024-2025学年高二上学期开学考试数学试题
浙江省宁波市镇海中学2024-2025学年高二上学期第一次月考数学试卷
湖南省长沙市望城区第二中学2024-2025学年高二上学期10月月考数学试题
浙江省杭州第二中学2023-2024学年高一上学期期末数学试题
浙江省临平萧山学校2023-2024学年高一上学期期末数学试题
上海市延安中学2024-2025学年高三上学期开学考试数学试卷
河北省廊坊市第十五中学等校2023-2024学年高一下学期7月期末考试数学试题
教育网站链接
在线组卷
课件下载
评课网
课件工坊
PPT模板
排课软件
云字帖