Ⅰ:阴影部分的面积随着点P的位置的改变而改变,其最小值为 .
Ⅱ:阴影部分的周长随着点P的位置的改变而改变,其最小值为 .
下列判断正确的是( ).
将两块三角板如图1所示放置,∠ACB=90°,∠BAC=45°,∠CDE=90°,∠DCE=30°,AC=CD=6.将△DCE 绕着点C顺时针旋转时CF平分∠BCD.
生活中的数学——自动旋转式洒水喷头如何灌溉草坪
背景素材
数学来源于生活,九4班分四个小组,开展数学项目式实践活动,获取所有数据共享,对草坪喷水管建立数学模型.草坪装有1个自动旋转式洒水喷头,灌溉园林草坪.如图1所示,观察喷头可顺、逆时针往返喷洒.
甲小组在图2中建立合适的直角坐标系,喷水口中心O有一喷水管OA , 从A点向外喷水,喷出的水柱最外层的形状为抛物线.以水平方向为x轴,点O为原点建立平面直角坐标系,点A(喷水口)在y轴上,x轴上的点D为水柱的最外落水点.
乙小组在甲小组基础上,测量得距洒水喷头水平距离较远若干米的E处,正上方有一树枝叶F , 旋转式喷洒水柱外端刚好碰到树叶F的最低处.
丙小组在甲小组基础上,测量得喷水口中心O到水柱的最外落水点D距离为半径,建立⊙O半径为OD的扇形平面图(图3).
问题解决
任务1
获取数据
丁小组测量得喷头的高米,喷水口中心点O到水柱的最外落水点D水平距离为8米,经过点 .
解决问题
求出水柱所在抛物线的函数解析式.
任务2
丁小组测树叶F距水平地面最低高度米,点F在抛物线上且离水喷头水平距离较远,E在OD上,OD⊥EF .
求OE的长.
任务3
推理计算
丁小组观察自动旋转式洒水喷头可顺、逆时针往返喷洒,可平面旋转角度不超过240°,求:
①这个喷头最多可洒水多少平方米?
②在①条件下,此时DD'的长.