(参考数据: ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)
(Ⅰ)求函数f(x)的最小正周期和最小值;
(Ⅱ)在△ABC中,A,B,C的对边分别为a,b,c,已知c= ,f(C)=0,sinB=2sinA,求a,b的值.
(I)求红、黄、蓝三种颜色的小球各取1个的概率;
(II)设X表示取到的蓝色小球的个数,求X的分布列和数学期望.
(I)求证:EF∥平面ABCD;
(Ⅱ)若∠CBA=60°,求二面角A﹣FB﹣E的余弦值.
(Ⅰ)设bn= ,求证:数列{bn}是等差数列,并求出{an}的通项公式an;
(Ⅱ)设Cn= ,数列{CnCn+2}的前n项和为Tn , 是否存在正整数m,使得Tn< 对于n∈N*恒成立,若存在,求出m的最小值,若不存在,请说明理由.
(I)求椭圆C的离心率和标准方程.
(II)圆 与椭圆C交于A,B两点,R为线段AB上任一点,直线F1R交椭圆C于P,Q两点,若AB为圆P1的直径,且直线F1R的斜率大于1,求|PF1||QF1|的取值范围.
(I)记 ,讨论函F(x)单调性;
(II)令G(x)=af(x)+g(x)(a∈R),若函数G(x)有两个零点.
(i)求参数a的取值范围;
(ii)设x1 , x2是G(x)的两个零点,证明x1+x2+2<0.