我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图)就是一例.这个三角形给出了(a+b)
n(n=1,2,3,4,5,6)的展开式的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)
2=a
2+2ab+b
2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)
3=a
3+3a
2b+3ab
2+b
3展开式中各项的系数,等等.
有如下四个结论:
①(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;
②当a=-2,b=1时,代数式a3+3a2b+3ab2+b3的值是-1;
③当代数式a4+4a3b+6a2b2+4ab3+b4的值是0时,一定是a=-1,b=1;
④(a+b)n的展开式中的各项系数之和为2n.
上述结论中,正确的有(写出序号即可).